

Monday, Feb 5, 2018

Pick up: classification handouts

Today you will:

1. Review basic Taxonomy

Homework/Planner:

Study for Thursday's DIA
Study Guide & ALL missing work due Thursday

NOTES: Classification

Why do we need to classify living things?

What is taxonomy?

- Allows easy retrieval of info.
- To show that things are alike
- Brings order
- Logical way of naming organisms
- Basis for identification

The science of naming and classifying (grouping) organisms

History of Classification:

TB page **518**

<u>Aristotle:</u> Linnaeus:

- Plants: sm., med, lg.
- Animals: land, sea, air
- Too basic…

- Developed a standardized, more practical system of grouping organisms.
 - -7 groups- a hierarchy
 - Largest at the top
 - Smallest at the bottom

How Things are Classified

TB Page 520

How is
life
organized?

- Into kingdoms... 6
- Taxa K,P,C,O,F,G,S each one is larger than the previous
- Newly discovered species are placed in their appropriate category based on characteristics & given a descriptive name using <u>Binomial</u> <u>nomenclature</u>
- Create a memory aid to remember this
- EX: King Phillip Came Over For Good Soup

What are the LEVELS of CLASS-IFICATION?

What is Binomial Nomenclature?

- a two-part scientific naming system.
 - uses Latin words
 - scientific names always written in italics
 - two parts made up of the genus name and species descriptor

- A genus includes one or more physically similar species.
 - Species in the same genus are thought to be closely related.
 - Genus name is always Capitalized.
- A species descriptor is the second part of a scientific name.
 - May refer to a trait, location found or scientist that discovered

it.

- always lowercase
- always follows genus
 name; never written alone
- If handwritten the whole name is underlined
- ❖ If typed, the whole name is italicized

Tyto alba

Why do biologists use scientific names?

You failed your Latin exam!

But Sweety, it's important to learn Latin:

All your friends' names have Latin roots...

- One species may have many common names.
- Some species may have very similar common names.
- Scientists can communicate
 about a species w/o
 confusion.

What's in a Scientific Name?

Page 519

Why are common names a problem?

- Common names pose problems:
 - Mt. Lion cougar puma panther
 - Jellyfish starfish -silverfish
 - Sand knat- sand flea 'no see ums'
 - All lead to confusion...
- Scientific names avoid these problems

COMMON NAMES	SCIENTIFIC NAME		
COMMON NAMES	Genus	species	
Roly-poly, pill bug, sow bug, potato bug	Armadillidium	vulgare	
Dandelion, Irish daisy, lion's tooth	Taraxacum	officinale	
House sparrow, English sparrow	Passer	domesticus	
Mountain lion, cougar, puma	Puma	concolor	
Red maple, scarlet maple, swamp maple	Acer	rubrum	

Linnaeus' classification system has seven levels.

- Each level is included in the level above it.
- Levels get
 increasingly
 specific from
 kingdom to
 species.

Analyze this table.... What do you notice????

KINGDOM Animalia	American Lobster	Market Squid	Blue Mussel	Virginia Oyster	European Oyster
Phylum	Arthropoda	Mollusca	Mollusca	Mollusca	Mollusca
Class	Malacostraca	Cephalopoda	Bivalvia	Bivalvia	Bivalvia
Order	Decapoda	Decapoda	Mytiloida	Pterioida	Pterioida
Family	Nephropidae	Loliginidae	Mytilidae	Ostreidae	Ostreidae
Genus	Homarus	Loligo	Mytilus	Crassostrea	Ostrea
Species	americanus	opalescens	edulis	virginica	edulis

- 1. From Top to Bottom, the char. of each org. gets increasingly MORE similar
- 2. What phylum do most of these animals have in commc Mollusca
- 3. What class do most of these animals have in common? Bivalvia
- 4. What kingdom are they in? Animalia
- 5. Can you tell what organisms are more closely related than others? Why? They are in the same group lower down the chart

What are the limitations to the classification system?

- Doesn't account for some species having similarities but NOT being related.
 - Ex. Giant panda & Red panda
 - Ex. Red panda & raccoon

What are the 3 DOMAINS?	gs are classified into:	
ARCHAEA	(EU)BACTERIA	EUKARYA
•KINGDOM	•KINGDOM	•KINGDOMS:
Archaebacteria	Eubacteria	Protista, Fungi
		Plantae, Animalia
PROkaryotic	PROKaryotic	Eukaryotic
Unicellular	Unicellular	Unicellular/Multi
EXTREME environments!	EVERYWHERE!	EVERYWHERE!
Heat-Loving, Salt-loving, Autotrophs/ Heterotrophs	Heterotrophic Autotrophic	Heterotrophic Autotrophic

Open to pg 219 Archaebacteria & Eubacteria

Ancient bacteria.... Live in extreme environments, as well as oceans, soil

Most bacteria are in the EUBACTERIA kingdom & are most familiar.

Found ever

PROKaryotic!!! make vitamins بعدد

Decompose dead matter 3 shapes

Protists include all microscopic organisms that are not bacteria, not animals, not plants and not fungi.

Sometimes called the odds & ends kingdom because its members are so different from one another

Most unicellular & microscopic Some have cell walls – some have cell membranes Some are autotrophic, some are heterotrophic

Fungi

Fungi are organisms that biologists once confused with plants, however, unlike plants, fungi cannot make their own food.

- Most fungi are multicellular (yeast is single celled) Consumers.... obtain their food from parts of plants that are decaying in the soil, so they are decomposers, too!
- Lack complex organ systems Live in moist environments
- Stationary and have cell walls

Plantae

All multicellular Complex cells

Cell walls & tissues org. into 'organs & organ systems

Autotrophs....organisms that make their own food

Phantom Orchid

•HETEROTROPHIC PLANTS!

•No chlorophyll → cannot photosynthesize.

• Their root systems have mycorrhizal fungi

•These fungi transfer sugars from the green

host plant nearby.

Indian Pipe

Snow Plant

