

Tues, Jan 17, 2017

Pick up: none

<u>Today you will:</u>

- Review Sex-linked Traits
- Understand how Pedigrees help us understand inheritance/Look at Karyotypes & what they tell us

Homework/Planner:

Complete Pedigree Practice & ISN pg 133

Study what we've covered so far, Quiz Mon, Jan 23!

_____10. It was suspected that two newborn babies had been exchanged in a hospital. Mr. and Ms. Jones received baby #1 and Mr. and Ms. Simms received baby #2. Blood typing on the parents and the babies are shown in the following table.

Blood Typing Results for Jones and Simms

Mr. Jones: Type A (I ^A i)	Mr. Simms: Type AB (I ^A I ^B)
Ms. Jones: Type B (I ^B i)	Ms. Simms: Type O (ii)
Baby #1: Type A	Baby #2: Type O

Blood Type Reference Table

Туре А	l ^A l ^A or l ^A i
Туре В	l ^B l ^B or l ^B i
Type AB	I _A I _B
Type O	ii

Based on these blood typing results, were baby #1 and baby#2 switched at birth?

- A. Yes; It is impossible for Mr. and Ms. Jones to have a baby with a Type A blood type.
- B. Yes; It is impossible for Mr. and Ms. Simms to have a baby with a Type O blood type.
- C. No; It is impossible for Mr. and Ms. Jones to have a baby with a Type O blood type.
- D. No; It is impossible for Mr. and Ms. Simms to have a baby with a Type A blood type.

Your Job Today ISN page 131

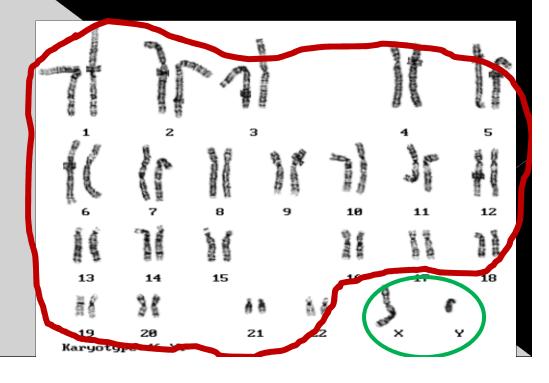
WRITE in ANSWERS

1. Complete Qs 4-7

2. You will use the 'key' provided to work the Sex Linked Punnett Square on ISN p.148 after I explain...

Notes, ISN p. 131

Xsome pairs #1-22


Autosomes vs Sex Chromosomes

Xsome pair #23

•XX = F

•XY = M

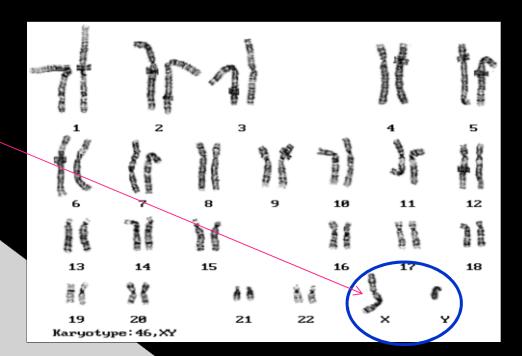
MALES determine the sex of the offspring!

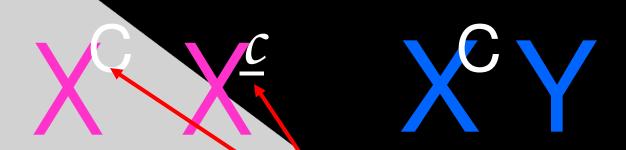
- 46 Chromosomes total in humans!
- 2 are sex xsomes:
 - >XX or XY

> Eggs = X or X

> sperm - X or Y

Sperm determines sex of the offspring




Sex Linked Traits

- 1. Traits found ONLY on the Sex Xsomes specifically the X
- **EXAMPLES:**
 - Colorblindness... Hemophilia...

 - Muscular Dystrophy...
- Traits found on <u>Autosomes</u> – the first 22 pair - are written as letters like **Dd** or **FF** (dimples &
- **Sex Xsome**, you change

How do you represent Sex-Linked genes?

As a superscript:

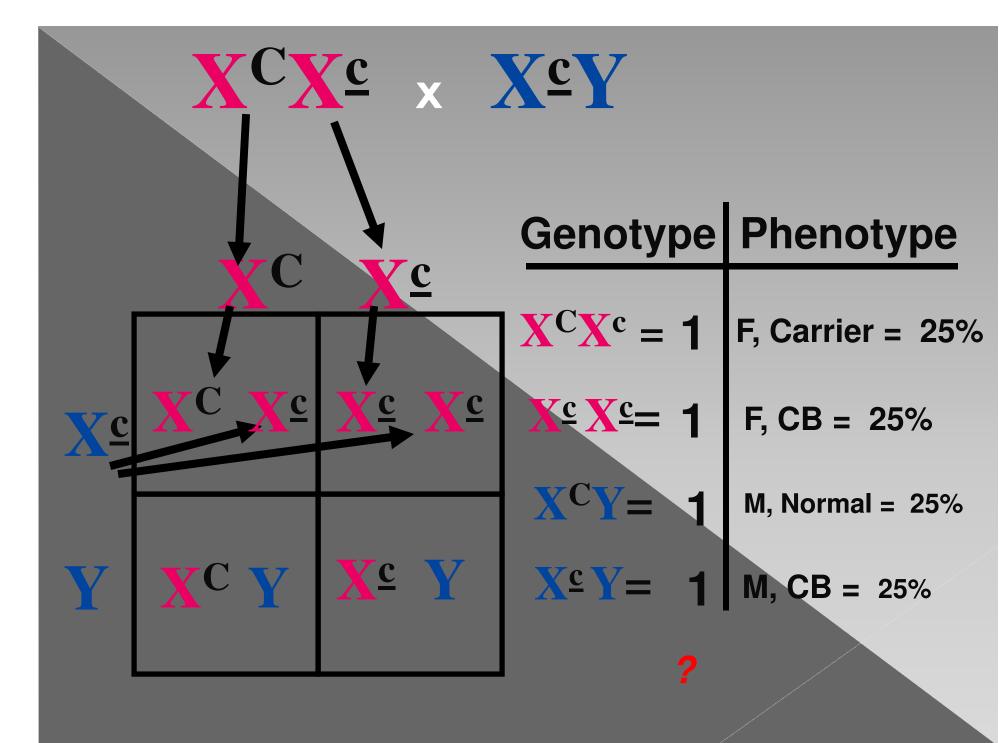
•The genes are attached or LINKED to the X sex chromosomes! That's why they are written as superscripts. No disorders are linked to the 'Y' xsomes because it is so small

Notes ISN page 131

What is a "Carrier"? Why are they "normal"?

Carrier = only F = do NOT exhibit trait, just carry it & MIGHT pass it on

So why can't men be carriers AND why do more men have Sex-Linked Genetic Disorders????


Sex Linked Punnett Square

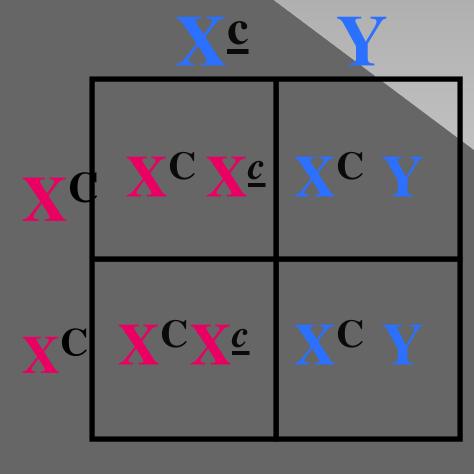
Cross a Heterozygous
 Normal Color Vision Female

 with a colorblind male.

XCXC X

Your 2nd Job Today

ISN page 130


Punnett Squares

- Color Vision

2nd = Hemophilia

Use the Keys on ISN pg 131

Genotype Phenotype

$$X^{C}X^{c} = 2$$
 Carrier are

$$\mathbf{X}^{\mathbf{C}}\mathbf{Y} = 2$$

NORMAL! = 50%

M, normal vision = 50%

% children w/ normal vision???100%

XhXh XHY

H

$$X^H X^h X^h Y$$

$$\mathbf{X}\underline{h} \mathbf{X}\mathbf{H} \mathbf{X}\underline{h} \mathbf{X}\mathbf{h} \mathbf{Y}$$

Genotype Phenotype

$$X^H X^h = 2$$

$$X^hY=2$$

Carrier = 50%

 $X^{\underline{h}}Y = 2$ M, hemophilia = 50%

50/50 chance children will be normal